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Abstract

Information in the cortex is widely believed to be represented by the joint activity of neuronal
populations. Developing insights into the nature of these representations is a necessary first step
in our quest to understanding cortical computation. Here, we show that fundamental questions
about neural representation can be cast in terms of the topological structure of population
activity. A new method, based on the concept of persistent homology, is introduced and first
validated on artificial datasets. The technique is then applied to study the topological structure
of neural activity in cell populations of primary visual cortex that were either spontaneously
active or driven by natural image sequences. Our analyses confirm that spontaneous activity
is highly structured and statistically different from noise. Furthermore, the topological objects
derived from spontaneous and driven activity have similar distributions which are dominated
by the topology of a circle and the two-sphere. This latter structure, we postulate, corresponds
to the representation of orientation and spatial frequency on a spherical surface. Our findings
shed new light on the relationship between ongoing and driven activity in primary visual cortex
and demonstrates, for the first time, that computational topology offers novel tools to tackle
fundamental questions about the representation of information in the nervous system.
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1 Introduction

Recent results suggest that spontaneous cortical activity wanders among intrinsic attractor states,
and that ongoing activity plays an important role in modulating the responses to an external stim-
ulus (Arieli et al., 1995; Cossart et al., 2003; Ikegaya et al., 2004; Kenet et al., 1997, 1999; Kenet
et al., 2003; Lampl et al., 1999; MacLean et al., 2005; Ringach, 2003; Tsodyks et al., 1999). In
particular, Kenet et al (2003) reported that population activity in primary visual cortex, as mea-
sured with voltage sensitive dyes (Grinvald and Hildesheim, 2004), appears to switch dynamically
among states, some of them, corresponding to the orientation maps obtained during stimulation
with oriented patterns. After observing a resemblance of spontaneous activity states to those of
orientation maps, these researchers confirmed, via post-hoc analysis, that the correlation between
the orientation maps and spontaneous activity was beyond what would be expected by chance.
However, for about 80% of the time, the cortex spent time in states that were uncorrelated with
the orientation states. This result could be caused by a ’background state’ of unstructured activity
or as structured activity that is not captured by the orientation maps. The methods used in Kenet
et al (2003) are not suited for discriminating between these possibilities.

A more principled approach for analyzing the structure of population activity was introduced
in a theoretical study by Goldberg et al (2004). These investigators studied the possibility of using
of a single real-valued statistic, the correlation coefficient between one of the measured states (the
’reference state’) and the remaining ones, to differentiate among the presence of a single background
state and the presence of a ring attractor. The basic idea is that the shape of this distribution
conveys information about the encoding. To illustrate this point they derived the distribution of
correlation coefficients in a case where multiple features are mapped to a high-dimensional unit
sphere (a scenario they referred to as a ’combinatorial encoding’) and when different variables
map into separate manifolds (a scenario they called ’unary encoding’). The shape of the resulting
distribution reflected the dimension of the sphere.

Their calculations assume that the target manifold is a perfect sphere, an assumption that
is critical is establishing the shape of the resulting distribution. For example, in the case two
circular variables mapping to the two-sphere, the distribution of the correlation coefficient between
spontaneous activity and one evoked orientation map, is uniform (Goldberg et al (2004), Fig 4g).
Deformations of the sphere, even though they may not change its topology, will generate different
distributions of the cross-correlation coefficients. Similarly, if some orientations are more heavily
represented than others, as found experimentally (Li et al., 2003), the shape of the distribution
of the correlation coefficient will be affected and depend on the reference state. In addition, the
calculation of the distribution of correlation coefficients can be carried out only if we know the
exact shape of the target manifold. In most situations, unfortunately, we lack such information;
this is the case for spontaneous activity or natural image stimulation.

An important observation, and the central motivation for pursuing our study, is that basic ques-
tions about encoding in neuronal populations can be answered by looking at topological properties
of the population activity alone (without making strong assumptions about the metric of the target
space). This point is best appreciated by discussing a few specific examples.

Consider the hypothesis that spontaneous cortical activity wanders between states correspond-
ing to orientation maps (Kenet et al., 2003). This would predict that the cloud of dots in high-
dimensional space representing the cortical states at different points in time should be topologically
equivalent to a circle, which is essentially a topology question. Intuitively, what needs to be veri-
fied is that the data points, when connected with their neighbors at an appropriate spatial scale,
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generate a single loop consistent with the topology of a circle.
Another example comes from the work of Goldberg et al (2004) who discuss a ’unary’ represen-

tation of features. In this scenario, different features map to different manifolds with the cortical
state of the system dynamically switching between them (Goldberg et al., 2004). Here, the topolog-
ical invariant of interest is the number of connected components in the population activity, which
provides an estimate of the number of different manifolds used in the encoding.

Finally, Bressloff and Cowan proposed a spherical model of orientation and spatial frequency
(Bressloff and Cowan, 2003). This interesting proposal, and one that will turn out to be related to
our experimental findings, was inspired by the alignment of pinwheels and extreme spatial frequency
preferences in imaging experiments (Issa et al., 2000). Testing if cortical activity is consistent with
the topology of a sphere is a question that can be answered using the methods introduced here.
These examples illustrate how topological analysis can provide basic, qualitative information about
the encoding of information in the brain.

Of course, there are inherent challenges in applying topological concepts to real, high-dimensional
data, where we only have a finite number of points and, furthermore, they are likely to be noisy.
From a mathematical point of view a key problem is how to generalize the notions of classical
topology in a rigorous way so that they can be applied to real data sets.

We begin by addressing this issue. Our first goal is to introduce and describe the basic concepts
that are central to the method, including the definition of Betti numbers (which formalizes the
notion of counting ’holes’ of different dimensions), and the tools of persistent homology, barcodes
and witness complexes, which allow Betti numbers to be estimated in experimental datasets. Then,
we investigate how the method performs under varying amounts of signal to noise ratio (SNR) in
simulations where the correct topological structure of the underlying dataset is known. After this
validation step, we apply the method to test the idea that spontaneous activity settles into patterns
that may resemble those that appear under natural stimulation (Fiser et al., 2004; Kenet et al.,
2003). We confirm that ongoing activity is far from noise and highly structured. Furthermore, we
provide the first rigorous evidence that the topological structure of ongoing activity is similar to that
obtained with natural image stimulation, which is consistent with a two-sphere. This represents
the first empirical finding that supports the spherical model of Bressloff and Cowan (2003).

In what follows we will consider a set of points {xt} , where xt ∈ IRd is a d-dimensional vector
representing the state of population activity at time t. In our particular case the state represents the
instantaneous firing rate of a neuronal population obtained with multi-electrode arrays in primary
visual cortex. However, we expect the methodology to be applicable to other situations, such as
when the cortical state is defined based on voltage-sensitive dye measurements, or based on calcium
indicators in two-photon imaging, or as fMRI BOLD signals. In the sequel, we consider this set
of points simply as a cloud of dots in IRd and ignore the fact that such points originate from a
time-series.

2 Tools from Algebraic Topology

In Appendix A we provide a technical overview of the main algebraic topological ideas involved in
this work. In this section, however, we present these ideas in an intuitive way.

Algebraic Topology is a subbranch of Topology. The motivating insight behind topology is
that some geometric problems depend not on the exact shape of the objects involved, but rather
on the way they are put together. For example, the square and the circle have many properties
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in common: they are both one dimensional objects (from a topological point of view) and both
separate the plane into two parts, the part inside and the part outside. Another way of putting it
is that topology attempts to understand the global connectivity of an object by considering how
the object is connected locally. Objects are assigned classes such that two objects in the same class
exhibit the same connectivity. For example, the square and the circle are be in the same class, but
the sphere and the circle are not.

Algebraic Topology studies properties of objects (in technical terms: topological spaces) and
maps between them, in particular, it identifies intrinsic properties of objects by transforming them
in certain ways and observing which properties do not change. We call these properties invari-
ants of the space. The kind of transformations that we will be interested in are called homotopy
equivalences. We do not define these transformations here, a precise definition can be found in
the appendix, but below we present several graphical examples which attempt to convey the idea
behind the definition. Informally, Algebraic Topology, because of its use of homotopy equivalences,
is sometimes referred to as “rubber sheet geometry” in the sense that it is oblivious to the fact that
by stretching the same piece of rubber one can obtain different looking objects, all it cares about
is that it was the same piece of rubber that was deformed in certain ways to produce differently
looking objects. It therefore is concerned with certain intrinsic properties of objects.

When two spaces X and Y are related by such a transformation, we will say that X and Y
are (homotopy) equivalent and write X ∼ Y . When no such transformation exists between X and
Y we write X � Y . Figure 1 shows several examples of spaces that are and are not homotopy
equivalent.

In particular, the notion from Algebraic Topology that we will be using is Homology. Homol-
ogy measures the connectivity of a space in a precise way: It proceeds by associating to a space
X a sequence of abstract spaces H0(X), H1(X), H2(X), . . . derived from X which encode this con-
nectivity information. In particular, the connectivity information is summarized by the numbers
b0(X), b1(X), b2(X), . . . which are computed from the derived spaces H0(X), H1(X), H2(X), . . ., re-
spectively. These are called the Betti numbers of the space X. It turns out that if we take a space
X and apply an admissible transformation to it (an homotopy equivalence) to obtain the space Y
(that is, X ∼ Y ) then bk(X) = bk(Y ) for k = 0, 1, 2, . . ., that is, the Betti numbers are invariants
of spaces.

Roughly speaking, one can say that b0(X) tells us the number of disconnected parts of X, b1(X)
counts the number of essentially different loops present in the space X, b2(X) counts the number
of voids et cetera. We will often refer to loops, connected components, voids, et cetera as features
of the space X.

One can understand the way in which the Betti numbers encode the connectivity information of
spaces through some examples. In Figure 2 we show the first three Betti numbers of a few standard
objects, which together with Figure 1 describe the Betti number signature of many seemingly
different spaces.

In practice, however, one does not have access to a full, nice continuous space such as those
shown in Figures 1 and 2. One must instead deal with finitely many sample points from a space.
We will denote by X such a discrete space. Therefore there are two considerations that one must
take into account when implementing these ideas.
Construction of Simplicial Complexes
Starting from X one must devise/construct a topological space amenable to the computation of
the Betti numbers. A natural candidate, which is suitable for studying the connectivity of (points
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Figure 1: This panel illustrates the notion of homotopy equivalence by showing several topological spaces
connected by the symbols ∼ when they are equivalent or � when they are not. The reader should think that
all the objects shown are made of an elastic material and is invited to try to visualize the “equivalence” of
two spaces by imagining how the deformation of this material takes place.
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(1,0,0,0,...) (1,1,0,0,...) (1,2,1,0,...) (1,0,1,0,...)(1,2,1,0,...)

a b c d e

Figure 2: Five standard spaces together with theit Betti number signature. From left to right: a point, a
circle, a (void) torus, a Klein bottle and a (void) sphere. For the case of the torus we the figure beneath
shows three loops. The red ones are essential in that they cannot be shrunk to a point whereas the green
loop can in fact be deformed to a point without any obstruction; this is actually picked by the Betti numbers,
in particular by the fact that b1 = 2. The Klein bottle has the same Betti numbers are the torus. This is a
reflection of the fact Betti number do not uniquely characterize the underlying object. For the case of the
sphere, the loops shown (and actually all loops on the sphere) can be contracted to points, what is signaled
by the fact that b1 = 0. Both the sphere and the torus have b2 = 1, this is due to the fact both surfaces
enclose a part of space (a void).
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Figure 3: From left to right, simplices of dimensions 0 (points), 1 (edges), 2 (triangles) and 3 tetrhedra.

in) a discrete space is a graph. One such construction can be carried out as follows. Pick and fix
a number ε > 0. Draw an edge between two points in your dataset X whenever their distance is
smaller than or equal ε. Figure 7 (a) shows such a construction for a simple case of points sampled
near the boundary of a circle. It turns out that this new space, call it R(1)

ε (X) is only useful for
computing b0. The building blocks we assembled together were 1-dimensional (we drew edges), this
is the reason for the supraindex (1) in R

(1)
ε (X).

The next step is the notion of a triangulation. Say that now, in addition to edges, we consider
using 2-dimensional building blocks shaped as triangles. Now we can construct a new space, call it
R

(2)
ε (X) (richer than our graph) from the dataset X which will contain R

(1)
ε (X) and also all (filled)

triangles formed by any three points whose pairwise distances are smaller than or equal ε. Figure
7 (b) shows this construction for the simple case of points sampled near the boundary of a circle.
Now, it turns out, that since we have included 2-dimensional building blocks in our derived space,
we can compute b0 and b1, that is, we can use R(2)

ε (X) for also finding the number of essential loops
present in that space.

This construction can of course be generalized to give rise to R(d)
ε (X) for any d ≥ 0, for example,

in the case d = 3, we would have to consider drawing a new class of building blocks, which will be
3-dimensional (tetrahedra). Clearly, it is enough to consider d ≤ n since for ε large enough one will
be left with only a single simplex of dimension n − 1. We let Rε(X) denote the Rips complex one
obtains for d = n− 1 which clearly contains all R(d)

ε (X).
In Topology, there is a specialized term for referring to building blocks of different dimensions,

we call them simplices. A point is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex,
etc. Figure 3 shows a depiction of different simplices. Also, the derived space Rε(X) receives the
name of Rips complex. In Algebraic Topology, a simplicial complex is a space which one obtains
by assembling together simplices while respecting certain rules. Figure 4 shows example of a valid
construction. For a precise definition see the appendix.

One last note before moving on to another important consideration is that in all our con-
structions there is an implicit notion of metric, that is, we said for example that we will draw an
edge between “two points whenever their distance is smaller than..”. This notion of distance is
application dependent and can be decided upon depending on the nature of the dataset.
Multiscale Computations
When we compute the Betti numbers of Rε(X) there is an implicit choice for the value ε. This
scalar can be thought of as fixing a scale for the computations. Larger values of ε will produce a
Rips complex with more simplices. When ε = 0 the Rips complex is just a set of points, with no
connections between them, therefore the underlying topology, as signaled by the Betti numbers, is
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Figure 4: A (valid) simplicial complex. Edges are shown in black, triangles in orange and tetrahedra in
green.

very simple: (b0, b1, . . .) = (n, 0, 0, . . .) where n is the number of points in X. When ε equals the
maximal distance between any two points in X, all possible simplices will be in the Rips complex
Rε(X). In technical terms one says that Rε(X) is a blob. It follows from the theory that its Betti
numbers signature is again very simple.1 One has (b0, b1, b2, . . .) = (1, 0, 0, . . .). However, if there is
any real feature underlying the datatset, one would hope to recover it for some intermediate value
of ε. Therefore, in practice one computes the Betti number signature for all values of ε at once.
Also, it is important that when doing this computation one keeps track of the life of the features
captured by each Betti number. In other words, one will be computing the Betti numbers across
scales in a persistent way. This leads to the definition of the Betti barcodes. Without entering
into techicalities which are deferred to the appendix, Figure 6 shows an example computation of
the barcodes corresponding to (b0, b1, b2) for points sampled on the surface of a torus.

For each Betti number one plots the birth and death of individual topological structures as ε
goes from zero to infinity. Each horizontal line segment in the ’barcodes’ of Figure 6 (a) represents
a different structure (a high-dimensional hole) with their ends indicating the points (corresponding
to different spatial scales) where it was created (left) and destroyed (right). Different intervals are
displaced vertically to allow their visualization; beyond this, the vertical axis has no significance.
The first Betti number, b0, which represents the number of connected components will tend to one
as ε increases, while bj for j > 0 will go to zero for large values of ε.

The horizontal axes willl therefore always represent, from left to right, increasing values of the
scale parameter ε. Longer lines are expected from features that are more prominent while short
ones will arise from small details, and usually termed topological noise.

The reader can observe how for a range of values of the persistent parameter, the signature is
correct. In order to compute the Betti numbers in this persistent fashion one needs to keep track
of the topological features while going from Rε(X) to Rε′(X) for ε′ > ε. This is made possible
thanks to a fundamental property enjoyed by homological constructions termed functoriality, see
the appendix. All computations of barcodes in the paper were perfomed using the software PLEX
freely available from http://math.stanford.edu/comptop/programs/.

A final point is that frequently the Rips complex gets too large: too many simplices may
constitute it for a range of values of ε. Other useful constructions of simplicial complexes have
been devised for achieving computational efficiency, with Witness complexes being the umbrella

1In fact, it is clear that we will have only one connected component and thus b0 = 1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

b0

b2

b1

Figure 5: This figure explains how to read barcodes using a dataset of points Y regularly sampled from
the surface of a torus. We endowed the points with Euclidean metric and used a Rips simplicial complex
construction. The barcode resulting from running persistent Betti numbers computations is displayed on the
right for (b0, b1, b2). The top subfigure represents b0, the one in the middle b1 and the bottom one b2. The
horizontal axes always represent the persistent parameter ε, which increases from left to right. If one wants to
know what are the Betti numbers of Rε0(Y) for a certain value of ε0, one needs to slice the three barcodes at
that value and count how many horizontal lines in each subfigure are intersected by the vertical slicing line.
This is illustrated here with a vertical red line in the barcodes; counting gives (b0, b1, b2) = (1, 2, 1). Long
lines in the barcodes are to be interpreted as salient/persistent features of the dataset. For a particular range
of the persistence parameter, indicated by the shaded area, there is a stable signature (b0, b1, b2) = (1, 2, 1)
indicative of a the torus. In assessing the significance of these results one needs to evaluate that probability
that such structures would result from the null hypothesis of random data.

term for them. A detailed explanation of the construction can be found in the appendix, the only
concept that the reader should retain is that witness complexes can be used to deal with larger
datasets and that they achieve efficiency by splitting the dataset X into two disjoint sets, a small
set, the landmark set and then the set of witnesses. The former set is used to justify the addition
of a small number of simplices which (generally) approximate well the underlying structure of the
dataset. Figure 7 shows both the Rips and Witness complex constructions (only 1 and 2-dimensional
simplices are shown) for the same set of points sampled around the bounday of a circle. The set of
landmarks is frequently built using the so called max-min procedure described in the appendix.

3 Results

3.1 Validation of the method

Our first step was to validate the methodology using artificial datasets where the ’ground truth’
(in this case the topological structure) is known. To approximate the statistical properties of the
point cloud in neural data, we simulated population of Poisson spiking neurons tuned to various
parameters. The objective of the simulations was to evaluate the minimum number of neurons and
mean firing rates required to recover the correct topological structure of different objects, such as
a circle and a torus.

3.2 Validation dataset # 1: a circle

Our first simulation is designed to simply verify that one is indeed able to recover the structure of a
circle from the simulation of a population of cells with homogeneous tuning curves, where the mean
spike count per time window is given by λ(θ) = rmaxexp (κ cos θ) /exp(κ), and the spike counts are
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Figure 6: Reading Barcodes. This figure shows the Betti barcode computed (only first three Betti numbers
are displayed) for the Rips complex on a set of 51 points randomly sampled from the surface of a torus.
Subfigures (a) to (d) show the barcode sliced at different values of ε with different Betti signatures. The three
dimensional renderings on each of (a), (b), (c) and (d) show R

(1)
ε and R

(2)
ε for the corresponding value of ε.

Triangles in red are the ones that already belong to the simplicial complex and those in blue are the ones
that will belong to the complex at a later value of ε. Note for example that in (a), only one edge has been
drawn and therefore the graph R

(1)
ε has many components, no loops and no voids ((b0, b1, b2) = (50, 0, 0));

(b) shows more edges and still no loops nor voids; In (c) we already have only one component, and the fact
that the red vertical line intersects two horizontal bars in the signature corresponding to b1 reveals that we
have two essential loops, whereas the same line does not intersect any horizontal line corresponding to b2,
what means that there is no void. This can be confirmed by looking at R(2)

ε and checking that there are
some punctures (missing triangles). Finally, (d) shows a slice for which the signature is correct.
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Rips Complex
 (60 vertices, 298 edges, 709 triangles)

Witness Complex (25 landmarks)
(25 vertices, 83 edges, 104 triangles)

Figure 7: In this panel, Y is a fixed set of points sampled around the boundary of a circle. (a) and (b)
show R

(1)
ε (X) and R

(2)
ε (Y), respectively. (c) and (d) show the corresponding Witness Simplicial complexes

for a comparable value of ε. In general by using Witness complexes one can obtain simplicial complexes
that faithfully represent the underlying structure of a dataset by using much fewer simplices than a Rips
construction would yield.
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Poisson distributed. The total number of cells in the population will be denoted by N . For any
given population, the preferred orientations will be equally spaced, such that the tuning curve of
the i-th cell is given by λi(θ) = rmaxexp (κ cos(θ − 2πiN)) /exp(κ), for i = 0, . . . , N−1. We chose a
value κ = 2 which represents the average tuning as observed experimentally (Ringach et al., 2002).
Here, rmax represents the mean number of spike counts in a time-bin. Fig 2a illustrates the tuning
curves for κ = 2 and N = 3. In all cases we simulated 100 presentations of 18 orientations equally
spaced around the circle. Thus, in all situations there are a total of 1800 points in the data set
which can be arranged in a data matrix of spike counts (Fig 2b). This represents our point cloud.
We then calculated the maximal length of the signature (b0, b1, b2) = (1, 1, 0) using 25 landmarks
positioned by the max-min procedure (Fig 2c).

These simulations were performed for different values of (rmax, N) to evaluate the performance
of the algorithm at various levels of SNR and population size. For each pair of values we generated
datasets G1, . . . , G10 using the procedure described above. Using each dataset Gi, we generated
shuffled control data B

(i)
1 , . . . , B

(i)
100 by randomly shuffling the elements of the data matrix. For

example, the barcode of the shuffled data in Fig 2c is shown in Fig 2d. If the shuffling operation
destroys structure in the data one expects the length of intervals for Betti numbers higher than
zero to decrease, as seen by comparing the barcodes in Fig 2c,d.

For each Gi and B
(i)
k we compute the length of the longest intervals in which we observe the

topological signature (b0, b1, b2) = (1, 1, 0) and obtain numbers li and l
(i)
k respectively. Then, we

calculated p(rmax, N) := 1
10

∑
i

#{k| li<l
(i)
k }

100 . The reason for generating G1, . . . , G10 and taking the
average over in the preceding equation is to get an estimate of the average probability over different
experiments.

A plot of p(rmax, N) is shown in the pseudo-color image of Fig 3a. The dashed line shows the
approximate boundary for detecting a circle at a significance level of p < 0.05. This analysis makes
it evident that there is a trade-off between the number of cells and mean spike counts per time
bin that is necessary to detect the circle at a confidence level of p < 0.05. The larger the number
of neurons, the smaller the spike rates can be and still allow for the reliable estimation of the
underlying topology. For five cells, for example, one would need average spike counts ' 4.5 spikes
per time-bin; for 10 cells, on the other hand, the rates can be as low as 1.5 spikes per time-bin.

3.3 Validation dataset # 2: a torus

Next, we investigated the ability of the technique to recover the structure of a torus when we
simulated a population of cells with tuning curves over two circular variables (θ, φ), given by
λ(θ, φ) := rmaxexp (κθ cos θ + κφ cosφ) /exp(κθ + κφ). As before this represents the mean spike
counts per bin and the spike counts were Poisson distributed. The total number of cells in the
population will be denoted by N . For any given population, the centers of the tuning curves,
(θi, φi), were chosen randomly inside the rectangle [0, π]× [0, 2π], such that the tuning curve of the
i-th cell was given by

λi(θ, φ) := rmaxexp (κθ cos(θ − θi) + κφ cos(φ− φi)) /exp(κθ + κφ)

for i = 1, . . . , N . For this simulation we used values of κθ = 2 and κφ = 1.5. Here, rmax represents
the mean number of spike counts in a time-bin. In all cases we simulated 100 presentations of 400
orientations and phases equally spaced around the circle: our set of stimuli were pairs (πk/20, πl/20)
, where k, l = 0, 1, . . . , 19. Thus, in all situations there are a total of 40,000 points in the data set.
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Figure 8: Validation of the techniques using Montecarlo simulations in the case of a circle. (a) We assume
an initial population of Poisson-spiking neurons tuned for orientation. (b) The simulated response of this
population to the presentation of different orientations is collected into a data matrix (or point cloud). (c)
Analysis of the simulated data shows a long interval with a signature of (b0, b1) = (1, 1), which correctly
identifies the circle. (d) We also compute the bar codes by shifting the relative positions of the columns
(data shuffling). In this case, the statistical distributions of spike counts for each axis remain unchanged,
but their relationship is destroyed. By computing the distribution of maximal b1 lengths under this null
hypothesis, we can evaluate the likelihood that our data was generated by the null hypothesis.
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Figure 9: Recovering the structure of data consistent with a circle and a torus. The panels illustrate the
capability of the algorithm in recovering the structure of a circle and torus for different values of the total
number of cells and their maximal firing rates. Small p-values are regions where the algorithm correctly
identified the circle and the torus and the likelihood of obtaining such data by chance is low. There is a
tradeoff between number of neurons and maximal spike rates. The more neurons the smaller the firing rates
can be to be able to detect the structures at the same level of significance.

We then calculated the maximal length of the signature (b0, b1, b2) = (1, 2, 1) using 50 max-min
landmarks. To evaluate the statistical significance of the result we computed the same statistic for
50 random permutations of all the elements within the data matrix.

Following the analogous procedure for the circle, for each pair (rmax, N), we generated a few
datasets G1, . . . , g5. Using each Gi, we generated shuffled datasets B(1)

1 , . . . , B
(i)
50 . For each Gi

and B
(i)
k we computed the length of the longest intervals in which we observed the signature

(b0, b1, b2) = (1, 2, 1), and obtain numbers li and l(i)k respectively. Then, we computed p(rmax, N) =
1
5

∑
i

#{k| li<l
(i)
k }

50 .
The result showing the behavior of p(rmax, N) is shown in the pseudo-color image of Fig 3b.

The dashed line shows the approximate boundary for detecting a torus at a significance level of
p < 0.05. As for the case of the circle, the larger the number of neurons, the smaller the spike
rates can be and still allow for the reliable estimation of the underlying topology. For five cells, for
example, one would need average spike counts ' 4.5 spikes per time-bin, while for 15 cells, on the
other hand, the rates can be as low as 1.5 spikes per time-bin.
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4 Empirical data: the topology of spontaneous and driven activity
in V1

We now turn to the analysis of empirical data. As described in the Methods these data were obtained
from multi-electrode recordings in primary visual cortex of macaque V1. Fig 4a illustrates one
insertion sequence into V1 using a 10x10 electrode array. Using these electrode arrays we recorded
the population activity in two experimental conditions. In the spontaneous activity condition,
population activity was measured when there was no visual stimulus present on the screen (the
eyes were occluded). In the natural image stimulation condition, we presented a video sequence
obtained by sampling different movie clips and the evoked spike trains from the neuronal population
were recorded (Fig 4b). A total of 20 to 30 minutes of data were collected in both conditions. These
data were split into 10 second segments and spike trains binned as described in Section ”Methods”.
The goal was to characterize the distribution of the ’topological signatures’ of the data segments
in both conditions.

Fig 5a illustrates the various topological signatures observed labeled by the first three Betti
numbers (b0, b1, b2). On top of each triplet of Betti numbers an object consistent with each sig-
nature is shown. The distributions of topological signatures for both experimental conditions are
shown in the histograms of Fig 5b, where the x-axis represents the same ordering of signatures as
depicted in Fig 5a. The left column represents distributions for the spontaneous condition, while
the right column represents the distributions for the natural image stimulation condition. Each
row represents a different threshold for the length of the signature (in the barcode) as a fraction
of the covering radius of the data. Larger thresholds represent instances where the signature was
’long-lived’ and likely to represent a salient feature of the data. We emphasize that all the topolog-
ical features shown are statistically different from noise, as Montecarlo simulations using shuffled
data show that the probability of obtaining segments of b1 or b2 longer than 0.3 by chance (which
is the smallest threshold used) was less than 0.005.

Interestingly, at high threshold values, there are two main signatures that dominate: a circle
with a signature of (1,1,0) and a sphere with a signature of (1,0,1). This holds for both experimental
conditions. Thus, both spontaneous and natural image stimulation have similar topological distri-
butions. However, the relative frequency of observation of these signatures appears to be different,
as the likelihood of observing the signature of a circle is higher with natural image stimulation
rather than in the spontaneous condition. At a lower threshold of 0.3 we observe a more diverse
distribution of topological signatures for the spontaneous activity, while the distribution of driven
activity remains dominated by the signatures of a circle and a sphere (Fig 5b, bottom panels).

5 Discussion

We have seen that computational topology can help address basic questions about the encoding of
information by neuronal populations. The result of the analysis is a topological characterization
of the activity, which provides qualitative information about its structure, such as the number
of clusters and loops in the activity patterns. A key concept we used, originating in the work of
Edelsbrunner and colleagues (Edelsbrunner, 1998; Edelsbrunner et al., 2000), was that of ’persistent
homology’, where ’holes’ of different dimensions are tracked as the ’spatial scale’ of analysis changes.
Structures that are present across a substantial range of the persistence parameter are likely to be
real features of the data. We showed how Montecarlo simulations can be used to test if the structures
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Figure 10: The experiment. (a) Multi-electrode arrays are inserted into primary visual cortex. The panels
show an insertion sequence. For a more detailed description of the method see (Nauhaus and Ringach, 2007).
(b) Natural image sequences, sampled from commercial movies, were used to stimulate all receptive fields
of neurons isolated by the array. In the spontaneous condition, activity was recorded while both eyes were
occluded.
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Figure 11: Experimental results. (a) Ordering of topological signatures observed in our experiments. Each
triplet (b0, b1, b2) is shown along an illustration of objects consistent with the signature. (b) Distribution of
topological signatures in the spontaneous and natural image stimulation conditions. Each row correspond to
signatures with a minimum length (denoted as the threshold) expressed as a fraction of the covering radius
of the data cloud.
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observed could have resulted from the null hypothesis of a set of randomly spiking neurons.
First, through the use of computer simulations we demonstrated that the method works as

expected, by recovering the underlying structure of the data in artificial datasets where the topology
of the data cloud was under our control. These simulations were done incorporating the variability
one would expect from real neuronal data. This was achieved by using Poisson distributed spike
counts with mean firing rates, population sizes and record lengths, comparable to those in the
actual experiments.

We then explored the structure of population activity when primary visual cortex was spon-
taneously active and when it was driven by natural image sequences. It was found that that the
structure was similar in both cases, consistent with prior results suggesting that natural stimulation
modulates ongoing activity only weakly (Arieli et al., 1995; Fiser et al., 2004; Grinvald et al., 2003;
Tsodyks et al., 1999).

Our results go beyond prior investigations by providing the first rigorous study of the topolog-
ical structure of population activity. We showed that both the data for spontaneous and driven
conditions were similarly distributed, with the signatures of the circle and the sphere dominat-
ing the results. We think one possible interpretation of the data is that there might be a single
underlying object that is insufficiently sampled, or sampled with biases, during our 10 sec time
intervals that are used to construct our data clouds. This variability/bias in the sampling results
in a distribution of topological signatures, rather than a single answer. Specifically, it is easy to
see that all the geometries represented in Fig 5a can be obtained from a torus by application of a
small number of operations such as removing a single point, collapsing a pair of points to a single
point, and collapsing a non contractible closed curve to a point. For example, the geometry with
signature (1, 3, 1) can be obtained by collapsing a pair of points to a single point, the one with
signature (1, 1, 1) can be obtained by collapsing a closed curve to a single point, and the geometry
with signature (1, 1, 2) can be obtained by performing two collapses of closed curves to points. The
same remarks apply to a Klein bottle, i.e. all the geometries can be obtained by a small number of
applications of these operations.

Despite these caveats, at high thresholds, our data are consistent with a single spherical object,
which we postulate, represents a mapping of orientation and spatial frequency as suggested by
Bressloff and Cowan (2003). In this model, orientation is mapped to the azimuth and spatial
frequency with elevation and the poles representing zero and infinite spatial frequencies. These
findings are consistent with the data of Kenet et al (2003) and, in fact, they may explain why 80%
of the time the cortical state is uncorrelated with the orientation maps. If the proposed spherical
model is correct, and the state wandered out of the equator near the poles, one may expect the
activity to be uncorrelated with the orientation states lying near the equator. A strong prediction of
our study is that if one were to repeat the Kenet et al experiment by imaging both orientation and
spatial frequency columns, the result will be that when activity is uncorrelated with the orientation
maps, they will be correlated with the spatial frequency maps.

There are many areas where topological analyses of neural activity can help guide further
research. First, the tools can be used to test specific hypotheses, such as ’is the activity consistent
with a single loop?’ Second, it provides a rigorous tool to study the phenomenon of cortical ’songs’,
where repeated patterns of activity have been interpreted as attractors (Cossart et al., 2003; Deneve
et al., 2001; Ikegaya et al., 2004; Latham and Nirenberg, 2004; Tsodyks, 1999). The statistical
analyses of these recurring patterns is a delicate matter, and it has been suggested that the patterns
may not be present at all (Mokeichev et al., 2007; Oram et al., 1999; Richmond et al., 1999; Wiener
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and Richmond, 2003). The presence of distinct stable fixed points, or line attractors, is something
that could be tested with our methods, as they would show up as different connected components
in the analysis. Third, topological analysis may be suitable for exploring the basic structure of
population activity in situations where we have no prior information, or specific hypotheses, about
the structure of the stimulus or the encoding. The encoding of odors and object shapes, are good
examples that may fall within these categories (Carrasco and Ridout, 1993; Edelman, 1998; Fdez
Galan et al., 2004; Feldman and Richards, 1998; Kayaert et al., 2005; Mazor and Laurent, 2005;
Tanaka et al., 1991; Wehr and Laurent, 1996). Fourth, understanding the topological structure of
population activity may help in the design of better decoding methods for use in brain-machine
interfaces (Andersen et al., 2004; Donoghue, 2002; Jazayeri and Movshon, 2006; Nicolelis, 2003;
Nicolelis and Chapin, 2002; Ohnishi et al., 2007; Santhanam et al., 2006; Serruya et al., 2003;
Shoham et al., 2005). For example, if one knew that the activity of a population of neurons in a
high dimensional space was equivalent to that of a circle, one could collapse the entire activity to
single number (such as the distance from a reference location).

6 Material and Methods

6.1 Animal Preparation

Experiments were approved by the UCLA Animal Research Committee and were performed follow-
ing the National Institutes of Health’s Guidelines for the Care and Use of Mammals in neuroscience.
Old-world monkeys (Macaca fascicularis, 3-5kg) were used. Initially, animals were sedated with ace-
promazine (30-60 g/kg) and anesthetized with ketamine (5-20mg/kg, im). Initial surgery was then
performed under 1.5-2.5% isoflurane. Two intravenous lines were put in place for the continu-
ous infusion of drugs. A urethral catheter was inserted to collect and monitor urine output. An
endotracheal tube was inserted to allow for artificial respiration. Pupils were dilated with oph-
thalmic atropine, and the eyes protected with ophthalmic Tobradex (Alcon Laboratories, Texas)
and custom-made gas permeable contact lenses.

At the completion of this initial surgery, the animal was transferred to a stereotaxic frame. At
this point, anesthesia was switched to a combination of sufentanil (0.15 g/kg/h) and propofol (2-6
mg/kg/h). After monitoring the anesthetic plane for about 10-20 minutes we proceeded to perform
a craniotomy over primary visual cortex. Only after the completion of all surgical procedures,
including the insertion of the electrode array, the animal was paralyzed (Pavulon, 0.1 mg/kg/h).

To ensure a proper level of anesthesia throughout the duration of the experiment, rectal tem-
perature, heart rate, noninvasive blood pressure, end-tidal CO2, SpO2, and EEG were continually
monitored by an HP Virida 24C neonatal monitor. Urine output and specific gravity were mea-
sured every 4-5 h to ensure adequate hydration. Drugs were administered in balanced physiological
solution at a rate to maintain a fluid volume of 5-10 ml/kg/h. Rectal temperature was maintained
by a self-regulating heating pad at 37.5C. Expired CO2 was maintained between 4.5 and 5.5%
by adjusting the stroke volume and ventilation rate. The maximal pressure developed during the
respiration cycle was monitored to verify that there was no incremental blocking of the airway. A
broad spectrum antibiotic (bicillin, 50,000 IU/kg) and anti-inflammatory steroid (dexamethasone,
0.5 mg/kg) were given at the beginning of the experiment and every other day.
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6.2 Electrophysiology

The database considered in this study was obtained using micro-machined electrode arrays (Cy-
berkinetics, Salt Lake City, UT) consisting of a square grid of either 10x10 or 5x5 electrodes of 1- or
1.5-mm in length. The distance between neighboring electrodes was either of for the 10x10 arrays
and for the 5x5 arrays. The receptive fields of neurons from the arrays overlapped significantly
(only those at opposite ends of the array were non-overlapping). Thus, our recordings come from
populations whose receptive fields are responding to the same area of visual space.

Spike sorting was performed offline using principal component analysis on the waveform shapes
with software developed in our laboratory. Stimuli were generated on a Silicon Graphics O2 and
displayed on monitor at a refresh rate of 100 Hz and a typical screen distance of 80 cm. The
mean luminance was 56 cd/m2. A Photo Research Model 703-PC spectro-radiometer was used for
calibration. The eyes were initially refracted by direct ophthalmoscopy to bring the retinal image
into focus for a stimulus roughly 80 cm from the eyes. Once neural responses were isolated, we
measured spatial frequency tuning curves and maximized the response at high spatial frequencies
by changing external lenses in steps of 0.25 D. This procedure was performed independently for
both eyes. All recordings originate from eccentricities of 2-7 deg.

6.3 Visual Stimuli

In the spontaneous condition the eyes were occluded. The stimuli in the evoked condition were
image sequences generated by digitally sampling commercially available videotapes in VHS/NTSC
format. Images had a spatial resolution of 320 240 pixels and were sampled at a temporal rate of
15 Hz. The selected movies included both man-made and natural landscape scenes. Six segments
of 30-s duration were used, making a total of 24 minutes of video. The movies were compressed
using Silicon Graphics’ MVC2 compression scheme (proprietary) and stored on a disk. A Silicon
Graphics O2 computer played back the images during the experiment on a computer screen that
measured 34.3 cm wide by 27.4 cm high. The refresh rate of the monitor was 90 Hz and each
movie image was presented for six consecutive frames. The mean luminance of the display was 56
cd/m2. Stimulation was monocular to the dominant eye (the other eye was occluded). The images
subtended 6 deg 4.5 deg of visual angle and covered all the receptive fields under measurement.

6.4 Creating point clouds

The preparation of the data points for both the spontaneous and driven activity during natural
image stimulation were identical. After spike-sorting signals from each electrode we sub-selected a
group of 5 neurons that showed the highest firing rates. Subsequently, a point cloud was generated
by binning spikes in 50ms windows. Spontaneous activity segments were collected in lengths of 10s
each. Thus, each segment contained 200 points living in IR5. The software package PLEX was used
with a weak witness complex construction. PLEX is a Matlab collection of functions for computa-
tional topology and is freely available from http://math.stanford.edu/comptop/programs/. We
used a weak witness contruction with 35 landmarks points which were selected using the ’maxmin’
procedure. The ’maxmin’ procedure was seeded with each one of the 200 points in the dataset,
in order to eliminate dependence on our initial selection. We recorded the maximal length of
persistence intervals for b1 and b2 for each of the 200 seeds.
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6.5 Statistical Significance

To evaluate the probability that the barcodes could have resulted from independent firing of neurons
across the electrodes we generated control datasets as follows. For each channel we computed first
the total number of spikes. Then, we generated a new dataset by randomly positioning the same
number of spikes in time. This keeps the total number of spikes for each neuron constant but
destroys any potential relationship between them. The identical analysis done for the real dataset
was performed for the control datasets (a total of 52700 times) generating a null distribution for
bar lengths under the hypothesis of Poisson neurons firing independently. Finally, one can perform
a one-tail rank sum test to verify that the median distribution of lengths in the data is significantly
higher than that expected by chance. In all our experiments the results were highly significant
(rank-sum test, p < 10−10).
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A Simplicial Homology

In this section we present a technical overview of Homology as used in our procedures. For an
intensive tratment we refer the reader to the excellent text of Hatcher [20].

Homology is an algebraic procedure for counting holes in topological spaces. There are numerous
variants of homology: we use simplicial homology with Z2 (binary, 0 or 1) coefficients. Given a set of
points V , a k-simplex is an unordered subset {v0, v1, . . . , vk} where vi ∈ V and vi 6= vj for all i 6= j.
The faces of this k-simplex consist of all (k−1)-simplices of the form {v0, . . . , vi−1, vi+1, . . . , vk} for
some 0 ≤ i ≤ k. Geometrically, the k-simplex can be described as follows: given k+1 points in IRm

(m ≥ k), the k-simplex is a convex body bounded by the union of (k−1) linear subspaces of IRm of
defined by all possible collections of k points (chosen out of k+ 1 points). A simplicial complex is a
collection of simplices which is closed with respect to inclusion of faces. Triangulated surfaces form
a concrete example, where the vertices of the triangulation correspond to V . The orderings of the
vertices correspond to an orientation. Any abstract simplicial complex on a (finite) set of points V
has a geometric realization in some IRn. Let X denote a simplicial complex. Roughly speaking, the
homology of X, denoted H∗(X), is a sequence of vector spaces {Hk(X) : k = 0, 1, 2, 3, . . .}, where
Hk(X) is called the k-dimensional homology of X. The dimension of Hk(X), called the kth Betti
number of X, is a coarse measurement of the number of different holes in the space X that can be
sensed by using subcomplexes of dimension k.

For example, the dimension of H0(X) is equal to the number of connected components of X.
These are the types of features (holes) in X that can be detected by using points and edges– with
this construction one is answering the question: are two points connected by a sequence of edges or
not? The simplest basis for H0(X) consists of a choice of vertices in X, one in each path-component
of X. Likewise, the simplest basis for H1(X) consists of loops in X, each of which surrounds a hole
in X. For example, if X is a graph, then the space H1(X) encodes the number and types of cycles
in the graph, this space has the structure of a vector space. Let X denote a simplicial complex.
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Define for each k ≥ 0, the vector space Ck(X) to be the vector space whose basis is the set of
oriented k-simplices of X; that is, a k-simplex {v0, . . . , vk} together with an order type denoted
[v0, . . . , vk] where a change in orientation corresponds to a change in the sign of the coefficient:
[v0, . . . , vi, . . . , vj , . . . , vk] = −[v0, . . . , vj , . . . , vi, . . . , vk] if odd permutation is used.

For k larger than the dimension of X, we set Ck(X) = 0. The boundary map is defined to be
the linear transformation ∂ : Ck → Ck−1 which acts on basis elements [v0, . . . , vk] via

∂[v0, . . . , vk] :=
k∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk]. (1)

This gives rise to a chain complex: a sequence of vector spaces and linear transformations

· · · ∂→ Ck+1
∂→ Ck

∂→ Ck−1 · · ·
∂→ C2

∂→ C1
∂→ C0

Consider the following two subspaces of Ck: the cycles (those subcomplexes without boundary)
and the boundaries (those subcomplexes which are themselves boundaries) formally defined as:

• k − cycles: Zk(X) = ker(∂ : Ck → Ck−1)

• k − boundaries: Bk(X) = im(∂ : Ck+1 → Ck)

A simple lemma demonstrates that ∂ ◦ ∂ = 0; that is, the boundary of a chain has empty
boundary. It follows that Bk is a subspace of Zk. This has great implications. The k-cycles in X
are the basic objects which count the presence of a “hole of dimension k” in X. But, certainly,
many of the k-cycles in X are measuring the same hole; still other cycles do not really detect a
hole at all – they bound a subcomplex of dimension k+ 1 in X. We say that two cycles ζ and η in
Zk(X) are homologous if their difference is a boundary:

[ζ] = [η] ↔ ζ − η ∈ Bk(X).

The k-dimensional homology of X, denoted Hk(X) is the quotient vector space

Hk(X) :=
Zk(X)
Bk(X)

. (2)

Specifically, an element of Hk(X) is an equivalence class of homologous k-cycles. This inherits
the structure of a vector space in the natural way [ζ] + [η] = [ζ + η] and c[ζ] = [cζ] for c ∈ Z2.

A map f : X → Y is a homotopy equivalence if there is a map g : Y → X so that f ◦ g is
homotopic to the identity map on Y and g ◦ f is homotopic to the identity map on X. This notion
is a weakening of the notion of homeomorphism, which requires the existence of a continuous map
g so that f ◦ g and g ◦ f are equal to the corresponding identity maps. The less restrictive notion
of homotopy equivalence is useful in understanding relationships between complicated spaces and
spaces with simple descriptions. We say two spaces X and Y are homotopy equivalent, or have
the same homotopy type if there is a homotopy equivalence from X to Y . This is denoted by
X ∼ Y .

By arguments utilizing barycentric subdivision, one may show that the homology H∗(X) is a
topological invariant of X: it is indeed an invariant of homotopy type. Readers familiar with
the Euler characteristic of a triangulated surface will not find it odd that intelligent counting of
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simplicies yields an invariant. For a simple example, the reader is encouraged to contemplate the
“physical” meaning of H1(X). Elements of H1(X) are equivalence classes of (finite collections of)
oriented cycles in the 1-skeleton of X, the equivalence relation being determined by the 2-skeleton
of X.

A.1 Induced homomorphisms

Is it often remarked that homology is functorial, by which it is meant that things behave the
way they ought. A simple example of this which is crucial to our applications arises as follows.
Consider two simplicial complexes X and X ′. Let f : X → X ′ be a continuous simplicial map: f
takes each k-simplex of X to a k′-simplex of X ′, where k′ ≤ k. Then, the map f induces a linear
transformation f# : Ck(X)→ Ck(X ′). It is a simple lemma to show that f# takes cycles to cycles
and boundaries to boundaries; hence there is a well-defined linear transformation on the quotient
spaces

f∗ : Hk(X)→ Hk(X ′), f∗([ζ]) = [f#(ζ)].

This is called the induced homomorphism of f on H∗. Functoriality means that (1) if
f : X → Y is continuous then f∗ : Hk(X) → Hk(Y ) is a group homomorphism; and (2) the
composition of two maps g◦f induces the composition of the linear transformation: (g◦f)∗ = g∗◦f∗.

A.2 Building simplicial complexes from the data

How is a simplicial complex built from the data? The basic idea is to take a finite set of points
X with distance function d, together with a parameter ε, and construct from it some simplicial
complex, for example the Rips complex, denoted Rε(X). The complex will have X as its vertex
set, and a collection {x0, . . . , xk} ⊂ X will span a k-simplex in Rε(X) if and only if d(xi, xj) ≤ ε for
all 0 ≤ i, j ≤ k, where d denotes the metric (distance) which is chosen depending on the problem
at hand.

Another possible construction is the Witness complex. Given a finite set of points X equipped
with a distance function d, a set of points L ⊂ X, the landmark set, and ε ≥ 0, we say that a
point x ∈ X is an ε-witness for a k + 1-tuple {l0, l1, . . . , lk} of points in L if maxi d(x, li) ≤ ε+mx,
where mx denotes the k + 1 smallest value of d(x, l) as l varies over all of L. We next associate
a simplicial complex Wε(X, L) to X, L and ε, by letting the vertex set of Wε(X, L) be L and
declaring that a collection {l0, l1, . . . , lk} spans a k-simplex in Wε(X, L) if and only if there is an
ε-witness for the collection {l0, l1, . . . , lk} and for all its faces. We note that if ε ≤ ε′, there is an
evident inclusion Wε(X, L) ⊂ Wε′(X, L). Consequently, we have an increasing family of simplicial
complexes, parameterized by the real line, just as we did for the Rips complexes. In practice the
landmark set is built either by uniform random sampling over X or by the max-min procedure:
one first randomly picks a point l1 from X. Then, the second point l2 is chosen so as to maximize
d(l1, l2). Subsequently, points are chosen to maximize the distance to the set of points already
chosen.

Earlier work has shown that this much smaller complex accurately represents topology in simple
cases, and we regard it as a computationally tractable proxy for the Rips complex (Carlsson and
DeSilva, 2004).
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A.3 Persistent Homology: barcodes

Given these definitions, it is clear that ε establishes the “spatial scale” of analysis. Assume that X
were sampled from an underlying space X. When ε is very small, the result will be a discrete set of
points; when ε is large, the result will be a single simplex of dimension #X− 1. However, there is
typically a middle range of values of ε where Rε(X) has homology isomorphic to that of the original
space , and therefore has Betti numbers equal to those of X. Thus, one of the key concepts below
is that the analysis will have to be done for a range of values, from low to high, and investigate
those scales where the topological structure remains invariant.

When the space X is a Riemannian manifold, for example, one can explicitly estimate a range
of values of for which this is the case (Niyogi et al., 2006). In our situation we only have the finite
sample and no a priori information about the underlying space, therefore, obtaining such estimates
is not practical.

Edelsbrunner and colleagues, however, made the following observation (Edelsbrunner et al.,
2000). Given ε ≤ ε′ there is a natural inclusion of simplicial complexes Rε(X) ⊂ Rε′(X), and because
of the functoriality property described above, one obtains a linear transformation Hk (Rε(X)) →
Hk (Rε′(X)) for any k. What Edelsbrunner et al observed was that in order to study the homology
of a given space using a point cloud sampled from it, one should keep track of the entire system of
vector spaces Hk (Rε(X)) along with all the linear transformations described above. Such a system
is called a persistence vector space. Importantly, it was shown that persistence vector spaces admit a
classification analogous to the classification result for finite dimensional vector spaces (Zomorodian
and Carlsson, 2004), which asserts that two vector spaces of the same dimension are isomorphic.
In the case of persistence vector spaces, it turns out that attached to each persistence vector space,
there is an invariant called a barcode which is just a finite collection of intervals (perhaps infinite
to the right), and that any two persistence vector spaces with the same barcodes are isomorphic.

With computational efficiency considerations in mind one could opt to compute barcodes using
the Witness complex construction.

We point out that even the witness complex can become intractable if is ε is permitted to go
to infinity. This is because for sufficiently large ε we will construct the full complex with the given
number of landmark points. If the set of landmarks is large, this may become intractable as well.
For this reason, we introduce a number R0 associated with a choice of landmark points L, which
is the covering radius of the set L, defined by R0 := maxx∈X minl∈L d(x, l). In practice we use
this as an upper bound for the persistence parameter, and express lengths of persistence intervals
as fractions of R0. When we have data which is the result from independent repeats of the same
experiment, we explore the resulting topological objects obtained by plotting the relative frequency
of observation for different topological signatures (sequences of Betti numbers) for different lengths
of the persistence interval.

In analyzing both simulated and experimental data we used PLEX, a collection of Matlab
functions for computational topology that implements the concepts described above. It is freely
available from http://math.stanford.edu/comptop/programs/.
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